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Abstract: Background and Objectives: Candida albicans causes various diseases ranging from superficial
mycoses to life-threatening systemic infections often associated with biofilm formation, including
mixed fungal–bacterial consortia. The biofilm matrix protects cells, making Candida extremely
resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza®) in vitro
destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing
the concentrations of antimicrobials required for the pathogen’s eradication. Materials and Methods:
Bovhyaluronidase azoximer, Longidaza®was obtained from NPO Petrovax Pharm Ltd., Moscow,
Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs
counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy.
Results: Thus, treatment with Longidaza® reduced the biofilm biomass of nine C. albicans clinical
isolates by 30–60%, while mixed biofilms of C. albicans with various bacteria were destroyed by
30–40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the
residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-
fold when combined with Longidaza®. While in the biofilm, two of four isolates became significantly
more susceptible to fluconazole in combination with Longidaza®. Conclusion: Taken together, our
data indicate that Longidaza® is capable of suppression of tissues and artificial surfaces biofouling by
C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing
the effective MIC of antifungals.

Keywords: Candida albicans; biofilms; enzymatic destruction of the biofilm; bovhyaluronidase
azoximer (Longidaza®)

1. Introduction

Candida albicans is the most prevalent fungi of the human microbiota. In healthy
humans, it asymptomatically colonizes various niches, like the oral cavity, gastrointestinal
and reproductive tracts, as well as the skin surface [1]. In immunocompromised patients,
Candida causes various diseases, from mucosa mycoses to life-threatening systemic blood-
stream infections [2]. The majority of mucosa candidiasis cases are associated with biofilm
formation [3]. In the biofilm, cells are embedded into a self-produced matrix of vari-
ous organic substances, like polysaccharides, proteins, lipids, and nucleotides [4]. The
biofilm matrix provides adhesion and mechanical stability of the cell consortia, acting as
an extracellular digestive system and providing a mechanical diffusional barrier for toxic
compounds [5–8]. Thus, the biofilm protects cells from the immune system and antifungals,
making Candida biofilms extremely resistant to treatment [9,10].
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In immunocompromised patients, C. albicans commonly exists in the form of mixed
bacterial–fungal biofilms consisting of two-, three-, or more species. In mixed consor-
tia, fungal–bacterial interactions result in drastic alterations in drug susceptibility and
pathogenicity of both organisms [2,11–13]. Regarding bloodstream infections, Staphy-
lococcus species are the most frequent counterpart in consortia with C. albicans, while
Pseudomonas aeruginosa is commonly co-isolated with C. albicans from skin and lung in-
fections [14–16]. Under anaerobic conditions, C. albicans forms dual-species biofilms
with Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, or
Enterococcus faecalis [17]. Mixed fungal–bacterial biofilms often differ significantly from
their single-species counterparts, challenging the development of their efficient eradication
options [18].

To date, several strategies for targeting mono- and polymicrobial biofilms have been
proposed, including antimicrobial peptides, quorum-quenching compounds, and uni-
versal antiseptics with dual activity, etc. [19–21]. Among them, enzymatic hydrolysis of
the biofilm matrix appears to be a promising approach because of the low toxicity and
biodegradability of the enzymes, as well as absence of resistance development risks. Thus,
the destruction of the matrix facilitates the penetration of antimicrobials into the cells and
decreases the adhesion [22,23]. For example, dispersin B, the glycoside hydrolase produced
by the periodontal pathogen Aggregatibacter actinomycetemcomitans, led to the destruction of
S. epidermidis biofilms, resulting in increased sensitivity of bacteria to antimicrobials [24,25].
Various proteases like subtilisin A [26], Ficin [27,28], Papain [29], chymotrypsin [30,31],
and others were reported as enhancers of antimicrobials against biofilm-embedded bac-
teria. Additionally, DNAse was reported to increase the efficacy of antimicrobial pho-
todynamic therapy on C. albicans biofilms [32]. In another study, synergistic enzyme
complex Lyticase was shown to disrupt biofilm formation by C. albicans [33]. Never-
theless, lack of data on the enzymatic treatment of Candida biofilms available to date
appears to be a limiting factor for the understanding of its efficacy. Here, we show the
effect of bovhyaluronidase fused with a copolymer of 1,4-ethylenepiperazine N-oxide
and (N-carboxymethyl)-1,4-ethylenepiperazinium bromide (bovhyaluronidaze azoximer,
Longidaza®) [34] on C. albicans mixed biofilms. The presence of azoximer provides anti-
inflammatory activity of the drug, significantly prolongs the half-life of the enzyme’s activ-
ity, and allows broad modes of application, like vaginal suppositories and injections [34],
thereby resolving objective difficulties of enzymes application, like low stability and few
possible application methods (see [35–37] and references therein). In several clinical studies,
the effect of bovhyaluronidaze azoximer (Longidaza®) on the microbiota of the urogeni-
tal tract has been reported [38–41]. Here, we show that Longidaza® efficiently destroys
C. albicans and C. albicans-bacterial mixed biofilms in vitro and increases the efficacy of
antimicrobials, thus appearing as a beneficial tool to improve the treatment of Candida
biofilm-associated infections.

2. Materials and Methods
2.1. Chemicals

Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm
Ltd., Moscow, Russia as lyophilized powder in vials by 3000 International Units (IU) per
vial. Cellulase and Ficin were used as the control and purchased from Sigma, St. Louis, MO,
USA (C22178 and F4165, respectively). Other chemicals were reagent grade and purchased
from Sigma, St. Louis, MO, USA.

2.2. Strains and Growth Conditions

Candida albicans clinical isolates were obtained from Kazan Institute of Microbiology
and Epidemiology (Kazan, Russia). Their source and susceptibility to fluconazole are listed
in Table 1. Fungi were identified by using the AuxaColor 2 Colorimetric sugar-assimilation
yeast-identification kit (Bio-Rad). The isolate C. albicans 4940 was used in all extended
experiments as a fluconazole and terbinafine sensitive strain. All strains were stored as
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a 50% glycerol stock at −80 ◦C and grown in BM broth (Basal medium, glucose 10 g,
peptone 7 g, MgSO4 × 7 H2O 2.0 g, and CaCl2 × 2 H2O 0.05 g in 1.0 L tap water) [42]. To
obtain mature biofilms, C. albicans cells were grown in BM broth in culture plates (tissue
culture treated) under static conditions for 48 h at 37 ◦C.

Table 1. Source of C. albicans clinical isolates and their susceptibility to fluconazole.

Isolate Source MIC, µg/mL

C. albicans K4940 Buccal swab 64
C. albicans 661 Pharynx, mucosa of the tongue 1024
C. albicans 688 Mucosa of the pharynx 1024
C. albicans 701 Mucosa of tonsils 1024
C. albicans 722 Mucosa of the pharynx 1024
C. albicans 748 Mucosa of the pharynx 64
C. albicans 761 Vaginal swab, cervical canal 1024
C. albicans 762 Mucosa of the urethra 1024

Staphylococcus aureus ATCC® 29213™, Escherichia coli MG1655, Pseudomonas aeruginosa
ATCC® 27853™, and Klebsiella pneumoniae (clinical isolate) were chosen as the most frequent
counterparts in Candida albicans–bacterial mixed consortia. Clinical isolate of K. pneumoniae
was obtained from the Kazan Institute of Epidemiology and Microbiology (Kazan, Russia).
Bacterial strains were stored as a 50% glycerol stock at −80 ◦C, while maintained on the
LB medium (Luria-Bertani broth, Miller, Sigma-Aldrich). Bacteria were inoculated with
C. albicans in BM broth and grown for 48 h without shaking at 37 ◦C.

2.3. Minimum Inhibitory Concentrations (MICs)

Minimum inhibitory concentrations (MICs) of antifungals were determined using the
broth microdilution method in 96-well plates (Eppendorf) in BM broth as recommended in
the protocol CLSI M27-A3. C. albicans was grown overnight and diluted with BM broth
until optical density of 0.5 at 600 nm to obtain the working solution. Then, 2-fold serial
dilutions of antifungals in concentrations from 1 to 1024 µg/mL were prepared in BM broth
and seeded with fungi (1% v/v of working solution) with subsequent incubation at 37 ◦C
for 24 h. The MIC was defined as the lowest concentration of the compound at which no
visible growth could be seen.

2.4. Biofilms Staining and Quantification

To obtain biofilms, bacteria (2–9 × 106 CFU/mL) and fungi (1–5 × 105 CFU/mL)
were grown under static conditions for 48 h in BM broth in 24-well TC-treated polystyrol
plates (1 mL per well). Then, the broth was exchanged with a fresh one supplemented
with Longidaza® at concentrations as indicated. Ficin and Cellulase were used as reference
enzymes able to disrupt bacterial biofilms. After 24 h incubation, the plates were subjected
to crystal violet staining [43] and Congo Red depletion assay [44]. To quantify the amount
of extracellular matrix of biofilms using Congo Red, a Congo Red solution in LB with a final
concentration of 80 µg/mL was added to mature biofilms. After, biofilms were mechanically
peeled off and incubated with dye for 90 min at 37 ◦C. Next, the plates were centrifuged for
5 min at 4400 rpm, the supernatant was transferred to 96-well plates, and the uncoated dye
was measured using a Tecan infinite 200 Pro microplate reader (Switzerland) at 490 nm. To
quantify the amounts of proteins and polysaccharides in the biofilm matrix, biofilms were
washed once with 1×PBS and stained with Sypro Orange (ready to use ×1000 solution),
ConA-TMR (500 µg/mL), or Calcofluor White M2R (CFW, 1 mg/mL). After 15 min incuba-
tion at 37 ◦C, wells were washed with PBS, filled with 100 µL PBS, and the fluorescence
was measured on a microplate reader Tecaninfinite 200 Pro (Switzerland, Männedorf) at
the following wavelengths: 470/570 nm for Sypro Orange (proteins), 552/578 nm for
ConA-TMR (α-polysaccharides), 254/432 nm for Calcofluor White (β-polysaccharides).
The amounts of proteins and polysaccharides were expressed in relative units calculated as
fluorescence units normalized by total biofilm biomass assessed in the CV-stain.



Medicina 2022, 58, 1710 4 of 12

2.5. The Anti-Biofilm Activity

To analyze the effect of enzymes on cells in biofilms, the viability of bacteria was
assessed by drop-plate analysis as described in Baidamshina et al. [27]. To do this, enzymes
were added to mature 48-h biofilms in the required concentrations, followed by incubation
for 24 h. After that, the wells were washed with a 0.9% NaCl, the biofilms were torn off
mechanically, and after a series of tenfold dilutions, they were sown on an agar nutrient
medium. After 24 h, the CFU were counted.

To assess the effect of Longidaza® on activity of antifungals against biofilm-embedded
C. albicans, the 48 h-old C. albicans biofilms were established in 96-well flat-bottom polystyrene
microplates by inoculation of the overnight culture in BM broth. Then, the plates were
washed with sterile 0.9% NaCl and 200 µL of the fresh BM broth, containing antifungal in
concentrations as indicated, were added following incubation for 24 h. In experimental
wells, the broth contained an additional 3000 IU of Longidaza®. The viability of detached
and biofilm-embedded cells was evaluated by MTT-assay [45].

2.6. Scanning Electron Microscopy

The structure of mixed fungal–bacterial biofilms after treatment with Longidaza® was
assessed with scanning electron microscopy. The biofilms were established by seeding
fungal–bacterial suspension in BM broth in 34 mm plastic adhesive Petri dishes (TC-treated,
Eppendorf, 2 mL per plate) followed with 48 h growth at 37 ◦C under static conditions.
Mature biofilms were washed with sterile PBS, filled with fresh BM broth containing
750 IU of Longidaza® and incubation was followed for the next 24 h. Then, plates were
washed 3 times with water and fixed with glutaraldehyde (1% water solution) for 24 h.
After subsequent washing with deionized water, the plates were dried 12 h at 55 ◦C and
coated in vacuum with gold on SCD 004 (Balzers AG, Balzers, Liechtenstein). SEM was
performed with the Quanta 200 microscope (FEL Company, Skokie, IL, USA) at 29 kV at
the Ultramicroanalysis Research Center at the Limnological Institute of the Siberian Branch
of the Russian Academy of Sciences, Irkutsk.

2.7. Statistical Analysis

Experiments were carried out in biological triplicates (i.e., newly prepared cultures
and medium) with three independent repeats in each one. The statistical significance of
results was assessed using the Kruskal–Wallis statistical test with significance threshold at
p < 0.05 in Prism 6 (GraphPad Software Inc. San Diego, CA, USA).

3. Results

3.1. The Effect of Bovhyaluronidaze Azoximer (Longidaza®) on C. albicans Biofilms

In several clinical studies, a possible effect of bovhyaluronidaze azoximer (Longidaza®)
on the microbial biofilms in the urogenital tract has been reported. Therefore, we investi-
gated whether Longidaza® is capable of destructing in vitro the biofilms of C. albicans. For
that, 48-h-old biofilm of C. albicans clinical isolate was prepared and treated for 24 h with
Longidaza® at various concentrations. Next, Cellulase from Aspergillus niger and protease
Ficin, for which the biofilm-destruction activity has been reported previously [27,46], were
used as relevant controls. As shown in Figure 1A, treatment with 750 IU of Longidaza® led
to the reduction of the biofilm biomass by 30%. To confirm the destruction of the biofilm
matrix, the Congo Red depletion assay was performed. Significant reduction of the dye ad-
sorption with biofilms treated with Longidaza® was observed in a dose-dependent manner,
suggesting the destruction of the biofilm matrix (Figure 1B). While no reduction of biofilm
biomass treated with either Cellulase or Ficin could be detected in crystal violet stain, in
the Congo Red assay, a dose-dependent decrease of the biofilm matrix was observed.
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Figure 1. The effect of Longidaza®, Cellulase, and Ficin on C. albicans K4940 biofilms in vitro. Forty-
eight-h-old C. albicans biofilms were washed and incubated 24 h in fresh BM broth supplemented
with either 85−750 IU of Longidaza®, 0.1−4 mg/mL of Cellulase from Aspergillus niger, or Ficin as
indicated. Biofilms were quantified with either (A) crystal violet staining or (B) Congo Red depletion
assay. Asterisks denote significant difference with untreated samples (* p < 0.05).

Since the biofilm rigidity and matrix compositions vary significantly for different
C. albicans strains, we tested the effect of Longidaza® on 7 additional clinical isolates. As
could be seen from Figure 2A, after treatment with 750 ME of the enzyme, the residual
biofilm of isolates varied in the range of 40–70%. The increase in the Longidaza® dose to
3000 IU led to deeper biofilm destruction of all clinical isolates, and the residual biofilm
decreased to 20–55% of initial values (Figure 2B), suggesting Longidaza® as a promising
tool for the destruction of C. albicans biofilms. To reveal the reason of various efficacy
of the enzyme on biofilms formed by different isolates, the quantity of proteins, α-, and
β-polysaccharides were assessed by differential fluorescent staining (Table 2). As could
be seen from the Table 2, the relative amount of proteins and polysaccharides differs
drastically between isolates. In turn, a significant correlation was observed between the
relative content of α- and β-polysaccharides and proteins and the biofilm reduction after
treatment with Longidaza® (CV stain). Thus, the C. albicans 748 biofilm was less effectively
destroyed, in which the maximum content of all the studied components was noted.

Table 2. Comparative assessment of the total biomass of biofilms and the relative content of polysac-
charides and proteins in the matrix of biofilms of C. albicans isolates before and after treatment
with Longidaza®.

Isolate Total Biomass of the
Biofilm, OD570

Residual Biomass of
the Biofilm, OD490

α-Polysacch,
Relative Units

β-Polysacch,
Relative UNits

Proteins, Relative
Units

C. albicans K4940 0.11 0.07 22.80 22.80 7.01
C. albicans 661 0.12 0.07 19.13 16.64 11.65
C. albicans 688 0.10 0.07 37.48 40.37 11.53
C. albicans 701 0.15 0.06 17.90 9.94 7.95
C. albicans 722 0.13 0.06 19.36 18.58 4.65
C. albicans 748 0.09 0.06 38.35 41.84 27.89
C. albicans 761 0.11 0.07 25.99 23.20 21.35
C. albicans 762 0.13 0.07 12.38 13.15 6.19
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Figure 2. The in vitro destruction of biofilms formed by C. albicans clinical isolates. Forty-eight-h-old
C. albicans biofilms were washed and incubated 24 h in fresh BM broth supplemented with 750 IU
or 3000 IU of Longidaza®. Biofilms were quantified with crystal violet staining. Asterisks denote
significant difference with untreated samples (* p < 0.05).

3.2. The Effect of Bovhyaluronidaze Azoximer (Longidaza®) on C. albicans–Bacterial
Mixed Biofilms

C. albicans can form fungal–bacterial mixed biofilms which are generally known to
exhibit higher resistance to various treatment options [1,47–49]. Therefore, mixed biofilms
of S. aureus, E. coli, P. aeruginosa, and K. pneumoniae with C. albicans were prepared and
treated with Longidaza®. Crystal violet staining revealed more pronounced reduction of
the biofilm biomass for the C. albicans–P. aeruginosa consortium, with 50% of residual biofilm
at the highest concentration of the enzyme (Figure 3A). For all other dual-species biofilms,
a significant biomass reduction could be detected only at 750 IU of Longidaza®. Neverthe-
less, the Congo Red assay data clearly demonstrated that treatment with Longidaza® re-
duces the matrix biomass of all mixed cultures in a dose-dependent manner (see Figure 3B).
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Figure 3. The effect of Longidaza® on fungal–bacterial biofilms. forty-eight-h-old fungal–bacterial
biofilms were washed and incubated 24 h in fresh BM broth supplemented with 85−750 IU of
Longidaza® as indicated. Biofilms were quantified with either (A) crystal violet staining or (B) Congo
Red depletion assay. Asterisks denote significant difference with untreated samples (* p < 0.05).
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The structures of non-treated and Longidaza®-treated biofilms were analyzed with
scanning electron microscopy (Figure 4). A visible decrease of the biofilm treated with
Longidaza was observed for C. albicans–S. aureus and C. albicans–P. aeruginosa biofilms,
although no decrease in the amount of viable bacterial and fungal cells in the consortia has
been confirmed by the CFUs count (Figure 5).
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Figure 4. The effect of Longidaza® on fungal–bacterial biofilms. Forty-eight-h-old fungal–bacterial
biofilms were washed and incubated 24 h in fresh BM broth supplemented with 750 IU of Longidaza®

as indicated and analyzed with scanning electron microscopy.
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Figure 5. The effect of Longidaza® on CFUs count in C. albicans and fungal–bacterial biofilms. Forty-
eight-h-old biofilms were washed and incubated 24 h in fresh BM broth supplemented with 750 IU of
Longidaza® as indicated. After 24 h incubation, the biofilms were washed twice with sterile 0.9%
NaCl. The adherent cells were scratched, resuspended, and CFUs were counted.

3.3. The effect of Longidaza® on the Susceptibility of Biofilms-Embedded C. albicans to Antifungals

Being embedded into the biofilm matrix, C. albicans becomes largely inaccessible
to conventional antifungals. We tested whether the incubation with Longidaza® would
increase the efficiency of antifungals against adherent fungal cells and swimming cell
clumps dispersed from the biofilm. For that, 48-h-old biofilms of four C. albicans clinical
isolates (4940, 661, 688, 701) were prepared and fluconazole at different concentrations
was added either alone or in combination with Longidaza® (in concentration of 3000 IU)
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to the established biofilms. After 24 h incubation, the viability of both detached and
biofilm-embedded cells was assessed in MTT-assay.

Longidaza® itself did not affect the viability of C. albicans (Figure 6, point 0). Treatment
with even 256 µg/mL of fluconazole did not lead to full death of cells (Figure 6), indicating
inefficiency of solely antifungal treatment. In marked contrast, the maximal concentration
of fluconazole in combination with Longidaza® led to the complete death of detached cell
clumps (Figure 6 upper row). At the same time, the combined use of the enzyme with
antifungal increased the effectiveness of the latter by four times against detached cells
clumps in three out of four studied isolates. The combined use of fluconazole with the
enzyme was less effective against cells in the biofilm—only two strains out of four tested
became statistically more susceptible to fluconazole in the presence of the Longidaza®.
Nevertheless, to achieve a similar effect on C. albicans 661 biofilm, a 16-fold lower concen-
tration of the antifungal drug was required in combined use compared to monotherapy.
An increase in the effectiveness of fluconazole against cells in the biofilm of C. albicans 701
has also been shown, although at the maximum concentration of the antifungal (Figure 6
lower row).
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Figure 6. The effect of Longidaza® on the susceptibility of detached and biofilm-embedded
C. albicans cells to fluconazole. Longidaza® was added to 48-h-old biofilms to a final concentra-
tion of 3000 IU/mL. Fluconazole was added up to final concentrations of 16−256 µg/mL. After 24 h
incubation, the biofilms were washed twice with sterile 0.9% NaCl. The viability of cells was analyzed
with an MTT-assay. The asterisks (*) denote a statistically significant difference of the residual respira-
tory activity in the untreated wells (solely antimicrobials) and wells with the combined treatment
(p < 0.05).

4. Discussion

Candida albicans asymptomatically colonizes various niches in human body, like the
oral cavity, gastrointestinal and reproductive tracts, causes various diseases In immunocom-
promised patients [2]. The majority of mucosa candidiasis cases are associated with biofilm
formation [3], where cells are embedded into a self-produced matrix and thus protected
from toxic compounds, the immune system and antifungals [5–8].

In several clinical studies, a possible effect of bovhyaluronidaze azoximer on the
microbial biofilms in the urogenital tract has been reported. Our data show that Longidaza®

is capable of destructing in vitro the biofilms of C. albicans by 30% after the treatment with
750 IU of the enzyme in a dose-dependent manner, while no reduction of biofilm biomass
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treated with either Cellulase or Ficin could be detected (Figure 1). On a clinical isolates,
the residual biofilm of isolates varied in the range of 40–70%, apparently, since the relative
amount of proteins and polysaccharides differs drastically between isolates (Table 2). This
fact explains a significant correlation observed between the relative content of α- and
β-polysaccharides and proteins and the biofilm reduction after treatment with Longidaza®

(CV stain). Thus, the C. albicans 748 biofilm was less effectively destroyed, in which the
maximum content of all the studied components was noted.

C. albicans can form fungal–bacterial mixed biofilms which are generally known to
exhibit higher resistance to various treatment options. Among the most frequent bacteria-
forming consortia with C. albicans at the urogenital infection, S. aureus, E. coli, P. aeruginosa,
and K. pneumoniae are mentioned in various reports [1,47–49]. The pronounced reduction
of the biofilm biomass has been observed for the C. albicans–P. aeruginosa consortium,
with 50% of residual biofilm at the highest concentration of the enzyme (Figure 3A),
apparently, because of the lowest ratio of proteins and polysaccharides in the biofilm. For
all other dual-species biofilms, a significant biomass reduction could be detected only at
the highest concentration of Longidaza®. The observed data were confirmed with scanning
electron microscopy (Figure 4). A visible decrease of the biofilm treated with Longidaza
was observed for C. albicans–S. aureus and C. albicans–P. aeruginosa biofilms, although
no decrease in the amount of viable bacterial and fungal cells in the consortia has been
confirmed by the CFUs count (Figure 5). Consequently, the enzyme leads to hydrolysis of
the extracellular matrix, but does not lead to cell death in the biofilm.

Being embedded into the biofilm matrix, C. albicans becomes largely inaccessible
to conventional antifungals. While the Longidaza® itself did not affect the viability of
C. albicans (Figure 6, point 0), the fluconazole in combination with Longidaza® led to
the complete death of detached cell clumps (Figure 6 upper row). At the same time, the
combined use of the enzyme with antifungal increased the effectiveness of the latter by
four times against detached cells clumps in three out of four studied isolates. The combined
use of fluconazole with the enzyme was less effective against cells in the biofilm—only
two strains out of four tested became statistically more susceptible to fluconazole in the pres-
ence of the Longidaza®. Nevertheless, to achieve a similar effect on C. albicans 661 biofilm,
a 16-fold lower concentration of the antifungal drug was required in combined use com-
pared to monotherapy. Probably, the lack of effect on other strains is due to the difference
in the composition of the extracellular matrix of the biofilm and, as a consequence, the
different permeability for antimicrobials, regardless of the presence of the enzyme in the
medium (Table 2). While many enzymes were reported to be efficient in destruction of
bacterial biofilms [27–29,50–56], relatively low works show the enzymatic destruction of
fungal and fungal–bacterial biofilms [33,57,58]. Taken together, our data and literature data
allow assuming that treatment of fungal biofilms remains challenging in modern infection
medicine and efficient tools for targeting fungal and fungal–bacterial biofilms are required
to be developed.

5. Conclusions

Taken together, our data demonstrate that Longidaza® is capable of destruction of
the biofilm formed by C. albicans, including C. albicans–bacterial consortia. This provides
a combined effect, including reduction of the biofouling of tissues and artificial surfaces, as
well as facilitating the drug penetration into the biofilm matrix, this way also reducing the
effective MIC of antifungals. Thus, a combination of antifungal with Longidaza® treatment
could significantly increase the efficiency of biofilm-associated fungal and fungal–bacterial
infections treatment.
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