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Abstract: While in a biofilm, bacteria are extremely resistant to both antimicrobials and the immune
system, leading to the development of chronic infection. Here, we show that bovine hyaluronidase fused
with a copolymer of 1,4-ethylenepiperazine N-oxide and (N-carboxymethyl) -1,4-ethylenepiperazinium
bromide (Longidaza®) destroys both mono- and dual-species biofilms formed by various bacteria.
After 4 h of treatment with 750 units of the enzyme, the residual biofilms of Staphylococcus aureus,
Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae preserved
about 50–70% of their initial mass. Biomasses of dual-species biofilms formed by S. aureus and the
four latter species were reduced 1.5-fold after 24 h treatment, while the significant destruction of
S. aureus–P. aeruginosa and S. aureus–K. pneumoniae was also observed after 4 h of treatment with
Longidaza®. Furthermore, when applied in combination, Longidaza® increased the efficacy of
various antimicrobials against biofilm-embedded bacteria, although with various increase-factor
values depending on both the bacterial species and antimicrobials chosen. Taken together, our data
indicate that Longidaza® destroys the biofilm structure, facilitating the penetration of antimicrobials
through the biofilm, and in this way improving their efficacy, lowering the required dose and thus
also potentially reducing the associated side effects.

Keywords: bacterial biofilms; enzymatic destruction of the biofilm; bovine hyaluronidase azoximer
(Longidaza)

1. Introduction

Although rapidly expanding the use of implants, implanted artificial systems and
invasive devices such as vascular or urinary catheters, ventilators, and heart valves helps
to save the lives of millions of patients around the world, biofilm formation on their
surfaces remains a common cause of in-treatment and post-surgery complications, in-
flammations and implant rejections [1,2]. Intravascular catheters and urinary catheters,
being the two most commonly applied invasive medical devices, quite unsurprisingly
also appear among the most common causes of nosocomially acquired infections [3–8].
In immunocompromised patients, even residential microflora being coupled with vari-
ous nosocomial pathogenic bacteria may eventually cause catheter-associated infections,
with the subsequent development of various diseases of the urinary tract, such as cystitis,
pyelonephritis, bacteremia, urosepsis, prostatitis, epididymitis, and septic arthritis etc. [1].
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Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis,
Proteus vulgaris, Citrobacter sp., Staphylococcus aureus, Staphylococcus epidermidis,
Enterococcus faecalis, Providentia rettgeri and Candida albicans [9–12] are common urinary
tract pathogens. Among them, E. coli is the most frequent agent causing about 80% of
urinary tract infections in humans, as well as bacteremia associated with Gram-negative
bacteria in hospitalized patients [9,13–16]. The above bacteria generally form rigid biofilms
on both the inner and outer surfaces of implanted catheters, as well as on the epithelium
of the urinary tract; in this way, they represent a common cause of chronic infectious
diseases [17–19]. Depending on how long the catheter remains within the body, either
monomicrobial (rather common for short-term catheters) or polymicrobial (rather com-
mon for long-term catheters) biofilms are often developed on their surfaces [6]. Biofilm
formation on the urinary tract epithelium facilitates the further penetration of pathogenic
bacteria into the renal tissue, which in turn often leads to chronic bacterial prostatitis and
pyelonephritis [20,21]. Another negative outcome of the biofilm formation in the urinary
tract is the formation of kidney stones as a result of the interaction between uropathogenic
bacteria and the minerals of the urine [22]. Urease producers such as Proteus sp., P. rettgeri,
K. pneumoniae, S. aureus and P. aeruginosa appear to be the most common microorganisms
associated with the formation of kidney stones [16,20,23]. Urethral catheter surfaces are
the common sites of bacterial biofilm formation, with explicit indications of E. coli biofilm
fouling being observed already after 4–12 h of incubation. Continuous ambulatory peri-
toneal dialysis catheters are commonly infected with such bacteria as S. epidermidis and
P. aeruginosa, which often cause complications of nephrological diseases as well [24–27].

Biofilm-associated infections are extremely difficult to treat due to the diffusional
barrier formed by the biofilm matrix, which prevents the penetration of antimicrobials
into the biofilm [11,28], resulting in up to 1000-times higher tolerance to antibiotics [20].
Moreover, while using combinations of antibiotics could lead to positive results when
treating biofilm-associated infections, the intensive development of bacterial antibiotic
resistance largely diminishes the efficacy of the available options [29,30].

To date, various strategies have been offered for targeting topical biofilms, focusing either
on their destruction or on the prevention of their formation, or both [2,31–39]. Nevertheless,
very few options are available for the treatment of urinary biofilm-associated infections. For ex-
ample, modified catheters and implants based on hydrogel, Poly (Tetralfouroethalene) (PTFE)
coatings, Polyzwitterions coatings, and Poly (Ethylene Glycol) (PEG) coatings could be useful
for the prevention of fouling [2,40], while a number of electrophysical and electrochemical
approaches targeting already-formed biofilms have recently been proposed [41].

One of the promising strategies for the destruction of already-formed biofilms is their
enzymatic treatment. In numerous in vivo and in vitro studies, an efficient disruption of
mature biofilms by various enzymes like DNase [42,43] and proteases (Ficin [35], Proteinase
K [44] and aureolysin [45,46]), glycoside hydrolases (Pel, Psl [47], dispersin B [48], alginate
lyase [49], cellulase [50] and extracellular levanase from Bacillus subtilis [51]) has been
reported. Biofilm matrix lysis leads to increased bacterial susceptibility to antimicrobials,
and thus also a considerable improvement of the latter [33,35,51,52]. Unfortunately, there
is no universal enzyme efficiently targeting arbitrary biofilms due to the considerable
differences in the composition of the proteins, polysaccharides, and extracellular DNA in
the biofilm matrix depending on the bacterial species and their growth conditions [53].
Another drawback of this approach is that many enzymes are either not approved for
clinical applications or only topical use is possible [52].

Several studies reported the contribution of bacterial hyaluronidases to the destruc-
tion of the biofilm matrix components, leading to subsequent cell dispersion [54,55].
Bovine hyaluronidase fused with a copolymer of 1,4-ethylenepiperazine N-oxide and
(N-carboxymethyl)-1,4-ethylenepiperazinium bromide (Longidaza®) [56] is approved for
application as a suppository, and has been successfully used in clinical practice since 2007
as a part of complex therapy for diseases accompanied by connective tissue hyperplasia
associated with adhesive, scar, and fibrotic processes. Besides its positive effect on tissue
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recovery, several studies [57–60] have shown changes in the bacteriological profiles of the
cervical canal, urinary tract and semen, suggesting the apparent effect of Longidaza® on
bacterial adhesion and biofilm dispersion.

Here, we show that Longidaza® is capable of destroying biofilms formed by S. aureus,
E. faecalis, E. coli, P. aeruginosa, K. pneumoniae, S. marcescens monocultures, as well as mixed
biofilms formed by S. aureus and other bacteria. We show explicitly that the enzyme reduces
the respective biofilm biomasses 1.5–2-fold and, being combined with antimicrobials,
increases the efficiency of the latter against biofilm- and cell-clump-embedded bacteria.

2. Materials and Methods
2.1. Reagents and Enzymes

A commercially available Longidaza® powder (NPO Petrovax Pharma LLC, Moscow, Russia),
at 3000 international units per vial, was solubilized in nutritional broth and added to
final concentrations of 85–750 IU/mL. The other chemicals were reagent grade, and were
purchased from Sigma, St. Louis, MO, USA.

2.2. Bacterial Strains and Growth Conditions

A number of Gram-positive (Staphylococcus aureus ATCC® 29213™ and Enterococcus faecalis
clinical isolate) and Gram-negative (Escherichia coli MG1655, Pseudomonas aeruginosa ATCC®

27853™, Klebsiella pneumoniae clinical isolate, Serratia marcescens clinical isolate) bacteria were
used as the test organisms. A clinical isolate of Enterococcus faecalis was obtained from the
Kazan Institute of Epidemiology and Microbiology (Kazan, Russia). Klebsiella pneumoniae
and Serratia marcescens were obtained from the Institute of Medical Microbiology, Giessen,
Germany. The bacterial strains were stored as a 50% glycerol stock at −80 ◦C, while they
were maintained and grown on the Luria-Bertani medium (LB) during experiments. The modified
Basal medium (BM) (glucose 5 g, peptone 7 g, MgSO4 × 7H2O 2.0 g and CaCl2 × 2H2O 0.05 g
in 1.0 L tap water) was chosen for the biofilm assays [35,36,59]. The bacteria were grown
under static conditions for 48 h at 37 ◦C to obtain rigid biofilms [36,61].

2.3. Antibacterial Activity

The MIC of the antimicrobials was determined by the broth microdilution assay in
96-well plates (Eppendorf, Hamburg, Germany) according to the EUCAST rules for an-
timicrobial susceptibility testing [62] in BM broth. The concentrations of the antimicrobials
ranged from 0.25 to 512 µg/mL. The MIC was determined as the lowest concentration of an
antibiotic for which no visible bacterial growth could be observed after 24 h of incubation.
Furthermore, 1000-fold dilutions of the culture liquid from the wells without visible growth
were prepared in BM broth to determine the MBC. The antibiotic’s concentration with no
bacterial growth was considered as the MBC.

2.4. Biofilm Assays

The bacteria (2–9 × 106 CFU/mL) were seeded in BM broth and grown under static
conditions in 24-well TC-treated polystyrol plates (1 mL per well). After 48 h of growth,
the old broth was exchanged with the new one, compounds of interest were added up to
the final concentrations as indicated in the figures (see the X-axis labels for concentration
values), and the incubation was continued for the next 4 or 24 h. Then, the supernatant
was saved for further analysis, and the wells were washed several times with sterile
phosphate-buffered saline (PBS) to remove the nonadherent cells. The obtained samples
were subjected to either crystal violet staining [63] with modification [35], or a Congo Red
depletion assay [64].

For the crystal violet staining, the liquid culture was removed after 4 or 24 h of
incubation, and the plates were washed twice with PBS (pH 7.4) and dried overnight.
Then, 1 mL 1% crystal violet solution (Sigma) in 96% ethanol was added per well, followed
by 20 min incubation. Next, the crystal violet solution was removed and the plate was
washed 3 times with PBS. After 30 min air drying, 1 mL 96% ethanol was added to re-
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solubilize the bound crystal violet, and the absorbance was measured at 570 nm with the
microplate reader Infinite 200 Pro (Tecan, Männedorf, Switzerland). The biofilm biomass
was expressed as a percentage of the residual biofilm, considering the optical density in
non-treated wells as 100%.

For the Congo Red assay, the culture fluid was removed from the test wells and
500 µL Congo Red solution (80 µg/mL in LB) was added to the wells, after the biofilm was
mechanically scratched from the surface, followed by 90 min incubation at 37 ◦C. Then,
the plates were centrifuged for 5 min at 4400 rpm, and the supernatant was transferred to
96-well plates and measured on a Tecan infinite 200 Pro microplate reader (Tecan, Männedorf,
Switzerland) at 490 nm. The results were expressed as the Congo Red (in optical units)
uptaken from the solution.

In order to assess the effect of the antimicrobials on the viability of the biofilm-
embedded cells, bacterial biofilms were grown under static conditions in the BM broth
for 48 h at 37 ◦C, washed, and exposed to 1, 4, 16× MBCs antimicrobials (see MBC values
in Table S1) for 24 h, either in the presence or in the absence of Longidaza® (750 IU/mL)
in fresh BM. The viability of the cells was assessed by MTT assay [65]. Briefly, the wells
were washed twice with 0.9% NaCl to remove non-adherent cells. The MTT solution
(1 mg/mL in PBS) was added into the wells with the biofilm, followed by the mechanical
removal of the biofilm from the surface and incubation at 33 ◦C until formazan crystals
could be observed in the control (non-treated) wells. Next, the samples were centrifuged
for 5 min at 4400 rpm, and the liquid was replaced with dimethyl sulfoxide (Sigma-Aldrich,
St. Louis, MO, USA) and incubated for 15 min at 33 ◦C to dissolve the formazan crystals.
The absorption was measured on a Tecan Infinite 200 Pro at 570 nm.

In order to assess qualitatively the viability of the bacteria in the biofilm and cell-
clumps after their exposure to the antimicrobials, the resazurin assay was performed.
Briefly, mature biofilms were treated with antibiotics and Longidaza® as described earlier.
After 24 h of incubations, the detached cells in the culture fluid were transferred to new
plates, harvested by centrifugation for 5 min at 4400 rpm, and resuspended in 160 µL 0.9%
NaCl. The biofilms were washed once with 0.9% saline and destroyed mechanically in
160 µL 0.9% NaCl. After that, 40 mL resazurin solution (0.1 mg/mL) was added to the
samples and incubated for 15 min at 30 ◦C until the pink color could be observed in the
non-treated samples. The blue color indicated the death of the bacterial cells.

2.5. The Quantification of the Matrix Composition

The content of proteins and polysaccharides in the biofilm matrix was assessed by
biofilm staining with the fluorescent dyes Sypro Orange (ready to use ×1000 solution),
ConA-TMR (500 µg/mL), and Calcofluor White M2R (CFW, 1 mg/mL). All of the dyes
were purchased from Sigma. The 48 h-old biofilms were treated with Longidaza® for
24 h. Next, the culture liquid was removed from the wells, washed once with 1× PBS
solution, and the dyes were added to the biofilms (100 µL per well) followed by 15 min
incubation at 37 ◦C. Then, the wells were washed with 1× PBS, filled with 100 µL PBS, and
the fluorescence was measured on a microplate reader Tecaninfinite 200 Pro (Männedorf,
Switzerland ) at the desired wavelengths (see Table 1).

Table 1. The wavelengths of the emission and excitation of the fluorescent dye compared to the
components of the biofilm staining.

Dye ConA-TMR CFW Sypro Orange

Excitation
Wavelength 552 nm 254 nm 470 nm

Emission Wavelength 578 nm 432 nm 570 nm
Target α-polysaccharides β-polysaccharides Proteins
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2.6. Scanning Electron Microscopy (SEM)

The structure of the biofilms after treatment with Longidaza® was assessed with
scanning electron microscopy. The biofilms were established by seeding the bacterial
suspension in BM broth in 34 mm plastic adhesive Petri dishes (TC-treated, Eppendorf,
2 mL per plate) followed by 48 h growth at 37 ◦C under static conditions. The mature
biofilms were washed with sterile PBS, filled with fresh BM broth containing 750 IU
Longidaza®, and incubation followed for the next 24 h. Next, the plates were washed
3 times with water and fixed with glutaraldehyde (1% water solution) for 24 h. After
the subsequent washing with deionized water, the plates were dried for 12 h at 55 ◦C
and coated in a vacuum with gold on an SCD 004 (Balzers AG, Balzers, Liechtenstein).
From the each sample, 10 fields of view were analyzed. The SEM was performed on
a Quanta 200 microscope (FEI Company, Hillsboro, OR, USA) at 29 kV at the Shared
Research Facilities for Physical and Chemical Ultramicroanalysis, Limnological Institute of
the Siberian Branch of the Russian Academy of Sciences, Irkutsk.

2.7. Statistical Analysis

The experiments were carried out in biological triplicates (i.e., newly prepared cultures
and medium) with three independent repeats in each one. The statistical significance of the
results was assessed using the Kruskal–Wallis statistical test, with a significance threshold
at p < 0.05.

3. Results

3.1. The Effect of Longidaza® on the Bacterial Biofilms In Vitro

While various strategies have been offered to date for the targeting of topical biofilms
for their destruction or the prevention of their formation [31–34], very few options are
available for the treatment of urinary and urogenital biofilm-associated infections. One of
the promising strategies for the destruction of already-formed biofilms seems to be their
enzymatic treatment.

We investigated whether Longidaza®—a registered drug produced by NPO Petrovax
Pharma LLC, formed of bovine hyaluronidases fused with a copolymer of 1,4-ethylenepiperazine
N-oxide and (N-carboxymethyl)-1,4-ethylenepiperazinium bromide (Longidaza®)
(bovhyaluronidaze azoximer, Longidaza®) [56]—is capable of disrupting bacterial biofilms
formed by various Gram-positive (S. aureus and E. faecalis) and Gram-negative (E. coli,
P. aeruginosa, K. pneumoniae, S. marcescens) bacteria commonly causing urinary tract infec-
tions [9]. For that, bacteria were grown in BM broth for 48 h on 24-well TC-treated plates;
next, the plates were washed twice by fresh BM and filled with fresh BM broth containing
Longidaza® at concentrations of 85, 190, 375 and 750 IU, respectively. After either 4 or 24 h
incubation, the culture liquid was discarded, and the residual biofilms were quantified by
crystal violet staining. The control wells were subjected to the same procedures, except for
the addition of Longidaza®, and the absorbance in these wells was considered to be 100%.

The data shown in Figure 1 indicate that Longidaza® is capable of destroying estab-
lished 2-day-old biofilms formed by almost all of the studied bacteria after four hours of
treatment. The maximum effect could be observed for S. aureus biofilms, with a biofilm
biomass reduction of 20% at 85 IU, and of 50% at 750 IU/mL of the enzyme (Figure 1A).
The significant destruction of biofilms of E. faecalis, E. coli, P. aeruginosa and K. pneumoniae
was observed after 4 h exposure to 750 IU/mL Longidaza®, with the residual biofilms
containing 60–70% of their initial biomass, while no significant effect on the biofilm of
S. marcescens could be observed. The effect after 24 h of treatment was less pronounced,
apparently because of the enzyme inactivation and/or damage (Figure 1B). Nevertheless,
15–20% biofilm biomass reduction could be observed for all of the bacteria (excluding
S. marcescens) at the drug concentration of 750 IU/mL.
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Figure 1. The effect of the Longidaza® treatment on bacterial biofilms. The 48-h old biofilms were gently washed with BM
broth, and a fresh BM broth containing Longidaza® at concentrations of 85–750 IU/mL was loaded. After either 4 (A) or 24
(B) hours of treatment, the residual biofilms were quantified by crystal violet staining. The asterisks (*) denote a statistically
significant difference of the biofilm in the untreated wells and wells treated with Longidaza® (p < 0.05).

In many cases, several species composing a microbial consortium while containing
only one pathogenic bacterium, altogether contribute to the development of long-term
infectious diseases [6]. S. aureus has been reported to form mixed biofilms with various
Gram-negative bacteria [16,20,23]. In order to test the effect of Longidaza® on mixed
bacterial biofilms, S. aureus was inoculated with either E. faecalis, E. coli, P. aeruginosa or
K. pneumoniae and grown for 48 h to obtain dual-species biofilms, which were subsequently
treated with Longidaza® for either 4 or 24 h. As can be seen from Figure 2, a significant
reduction of the residual biofilm was observed in all of the bacterial combinations after
24 h treatment with the enzyme. Moreover, a 4-h treatment of mixed communities with
Longidaza® also lead to a significant reduction of biofilms formed by S. aureus–P. aeruginosa
and S. aureus–K. pneumoniae, suggesting that Longidaza® could be a promising tool for
bacterial biofilm destruction.
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3.2. Scanning Electron Microscopy

In order to visualize the effect of Longidaza® on the biofilm’s structure, 48-h old
biofilms of S. aureus, E. faecalis, E. coli, P. aeruginosa and K. pneumoniae were treated for
24 h as previously with the enzyme, fixed with glutaraldehyde and analyzed using scan-
ning electron microscopy. As can be seen from Figure 3, treatment with Longidaza® had
hardly any effect on the visual structure of S. aureus and K. pneumoniae biofilms. By con-
trast, the formation of pores and cavities could be clearly observed in the treated biofilms
of E. faecalis, E. coli, and P. aeruginosa, in comparison with the dense, multilayer struc-
tures visualized for the control wells. The most pronounced effect could be observed for
P. aeruginosa, where the biofilm was reduced down to a monolayer of adherent cells and
even single cells. Similar effects were detected for mixed biofilms of S. aureus with either E.
faecalis, E. coli or P. aeruginosa (Figure 4). Thus, the treated biofilms of these consortia exhibited
a pronounced porous structure in comparison with the untreated wells. Again, no significant
effect could be observed for the S. aureus–K. pneumoniae dual-species biofilm, which is in
agreement with the less pronounced effect observed in the crystal-violet stain experiments.
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3.3. The Effect of Longidaza® on the Structural Components of Bacterial Biofilms

In order to assess the effect of Longidaza® on the components of the biofilm matrix,
a Congo red depletion assay was performed. Treatment with Longidaza® for 24 h led to
the reduction of the Congo red uptake in the biofilms of all of the studied bacteria, with
the exception of S. marcescens. Of note, a more pronounced effect of Longidaza® assessed
by Congo red staining was observed for Gram-negative bacteria (E. coli, P. aeruginosa,
K. pneumoniae) (Figure 5). In mixed biofilms, a more pronounced effect was observed for
consortia of S. aureus with either P. aeruginosa or K. pneumoniae (Figure 6).

In order to gain further insight into the components of the biofilm that are destroyed
by Longidaza®, the biochemical composition of the extracellular matrix was analyzed with
the differential fluorescent staining of the biomolecules. For this purpose, mature 48-h
old biofilms were treated with Longidaza® (750 IU/mL) and stained with Concanavalin
A, Calcofluor white, and Sypro Orange to evaluate the changes of the α-polysaccharides,
β-polysaccharides and proteins in the biofilm matrix, respectively. As a control, intact
biofilms of the same bacteria were stained. In agreement with the crystal violet and
Congo Red assays, a significant reduction of β-polysaccharides in the biofilms of S. aureus,
E. faecalis, E. coli and P. aeruginosa was observed after the enzymatic treatment (Figure S1),
suggesting the preferred hydrolysis of β-glycosyl bonds by Longidaza®. Nevertheless, in
the E. faecalis biofilm, a significant decrease of α-polysaccharides could also be observed
(Figure S1), with the latter effect possibly being attributable to the general biofilm destruction.
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Figure 6. The effect of Longidaza® treatment on mixed bacterial biofilms. The 48-h old biofilms were
gently washed with BM, and a fresh BM broth containing Longidaza® at concentrations of 85–750 IU/mL
was loaded. After 24 h of treatment, the residual biofilms were quantified using a Congo Red depletion
assay. The asterisks (*) denote a statistically significant difference of the biofilm in the untreated wells and
the wells treated with Longidaza® (p < 0.05).

Thus, Longidaza® promotes the hydrolysis of β-polysaccharides in the matrix of
biofilms of the studied bacteria, leading to their subsequent destruction. Of note, the
observed effect varies between species, which is apparently governed by the features of
each bacterium or their consortia.

3.4. The Effect of Longidaza® on the Efficacy of Antimicrobials against Biofilm-Embedded Bacteria

While embedded into the biofilm matrix, bacterial cells become largely inaccessible
to both antibiotics and biocides. The above data suggest that biofilm matrix destruction
with Longidaza® could facilitate the penetration of antimicrobials into biofilm-embedded
bacteria, as has been shown previously in other model investigations [33–35,66]. For
this, 48-h old biofilms were incubated for either 4 or 24 h in the presence of Longidaza®

(750 IU) with antimicrobials (Ciprofloxacine and Cefuroxime) at their respective 1×, 4×
and 16× MBCs (minimal bactericidal concentrations, see Table S1 for values), followed
by the evaluation of the biofilm-embedded cells’ viability with an MTT-assay (Figure 7).
After 4 h of treatment of E. faecalis biofilms with Ciprofloxacine in combination with
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Longidaza®, a 3.5-fold drop of cell viability was observed, while solely the antimicrobial
did not have any significant effect (Figure 7A). For E. coli, P. aeruginosa and K. pneumoniae,
the effect was less pronounced. After 24 h of treatment, the viability of E. faecalis, E. coli and
P. aeruginosa decreased significantly, irrespective of the treatment with Longidaza®, while
Ciprofloxacine could affect the K. pneumoniae viability only in the presence of the enzyme.
The efficacy of Ciprofloxacine against S. aureus could not be improved by combination with
Longidaza®. By contrast, the combination of Longidaza® with Cefuroxime demonstrated
synergy on S. aureus (Figure 7B) after both 4 and 24 h treatment, as well as with E. faecalis
and K. pneumoniae after 24 h treatment. At the same time, no significant increase of the
antibiotic efficacy on P. aeruginosa biofilm-embedded cells was detected. In a qualitative
metabolic test with rezazurine, a significant increase of Cefuroxime efficacy was detected
only on E. faecalis biofilms (Figure S2). On the other hand, the nearly complete eradication
of S. aureus, E. faecalis and P. aeruginosa detached cell clumps could be observed after
treatment with a combination of Longidaza® with 1× MBC of Cefuroxime, while solely
the antibiotic remained inefficient even at 16× MBC (Figure S2).
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Figure 7. The effect of Longidaza® on the susceptibility of biofilm-embedded bacteria to antimicrobials. Longidaza® was
added to 48-h-old biofilms to a final concentration of 750 IU/mL. Ciprofloxacin (A) and cefuroxime (B) were added up to
final concentrations of 1–16× MBC (see Table S1 for the values). After 24 h incubation, the biofilms were washed twice with
sterile 0.9% NaCl. The viability of the adherent cells was analyzed with an MTT assay. The asterisks (*) denote a statistically
significant difference of the residual respiratory activity in the untreated wells (solely antimicrobials) and wells with the
combined treatment (p < 0.05).



Pharmaceutics 2021, 13, 1740 11 of 17

Quite surprisingly, no synergistic effect of Longidaza® with antimicrobials could be
observed for dual-species biofilms in the MTT assay, where solely antibiotic treatment
already led to a significant reduction of the cells’ viability (Figure S3). Again, the resazurine
test revealed an increased efficacy of Cefuroxime against cell clumps detached from dual-
species biofilms formed by S. aureus in combination with E. faecalis, E. coli or P. aeruginosa
(Figure S4). Additionally, the moderate enhancement of the treatment efficacy against
S. aureus–E. faecalis mixed biofilms could also be observed. No significant effect was detected
for Ciprofloxacine. The latter fact could be plausibly attributed to the complex interactions of
S. aureus with other bacteria in co-cultures, resulting in their drastically altered susceptibility to
antimicrobials, as has been shown for aminoglycosides and Ciprofloxacine [67,68], although un-
raveling the particular mechanisms governing these interactions requires further investigation.

4. Discussion

Since ancient times, improving the effectiveness of the treatment of infections has
remained an important challenge in clinical medicine. Biofilm formation on tissues and
catheters is an important factor of bacterial virulence. An extracellular biofilm matrix effec-
tively shields bacteria from the immune system of the host as well, as from antimicrobials,
providing up to 1000-fold higher tolerance to antibiotics compared to their planktonic
forms [69–71]. In urinary patients, both implanted catheters and the epithelium of the
urinary tract are subjected to bacterial biofilm fouling, in turn leading to the develop-
ment of long-term diseases [6,17,18] such as chronic bacterial prostatitis and pyelonephri-
tis [20,21]. While the enzymatic destruction of biofilms in general seems to be an attractive
approach [31–35,43,47,50,51], relatively few enzymes have been proposed for the treatment
of urinary biofilms. In clinical practice, most enzymes are used for wound healing, and
are not suitable for internal use due to the low stability of the preparations, as well as
the high allergic potential [72–74]. Longidaza® is already used in clinical practice, and
in some reports the application of the enzyme led to the increased detection of microbial
contamination in the semen and urea of patients with various diseases of the urogenital
tract [57–60].

Here, we show in vitro the antibiofilm activity of Longidaza®, a bovine hyaluronidase
fused with a copolymer of 1,4-ethylenepiperazine N-oxide and (N-carboxymethyl) -1,4-
ethylenepiperazinium bromide, which stabilizes the enzyme and increases its activity [56].
Hyaluronic acid, a large glycosaminoglycan, has been reported to make an essential contri-
bution to the formation of staphylococcal biofilms. In turn, the destruction of hyaluronic
acid with hyaluronidase led to the effective destruction of staphylococcal biofilms [54,55].
A similar effect has been shown for Streptococcus intermedius, which splits hyaluronic
acid for the initial adhesion while forming a consortium on the surface of tissues [55].
In accordance with these data, the significant destruction of staphylococcal biofilm with
Longidaza® has been observed after 4 h of treatment (Figure 1A). The biofilm biomasses
of other bacteria were also diminished, although with lower efficiency. Of note, after 24 h
of treatment, the biofilm destruction was less pronounced (Figure 1B), apparently due
to the inactivation of the enzyme [75–77]. By contrast, in mixed cultures, 24 h treatment
led to biofilm biomass reduction by 30–50%, while 4 h treatment did not affect S. aureus-
E. faecalis and S. aureus-E. coli biofilms (Figure 2). In previous studies, the most fascinating
results were observed for proteases for the targeting of staphylococcal biofilms [35,44–46],
while glycoside hydrolases were effective against gram negative bacteria [47–51]. Ac-
cording to our results, Longidaza® promotes the destruction of monospecies biofilms
of both Gram-positive and Gram-negative bacteria, as well as their mixed communities,
suggesting Longidaza® as a promising enzyme for the combating of biofilm-associated
polymicrobial infections. Of note, the biomass of a S. aureus–P. aeruginosa mixed biofilm was
reduced twofold after 4 h treatment, which makes Longidaza® a promising tool to improve
the treatment of acute and chronic wounds, as well as in cystic fibrosis complicated by
S. aureus–P. aeruginosa mixed biofilm formation [78–85].
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The in vitro ability of Longidaza® to destroy the biofilms formed by various bacteria
fits with recent clinical data reporting Longidaza® to increase the frequency of pathogens’
detection in the urogenital tract of patients [57–60,86], apparently via the destruction and
dispersion of biofilms. Indeed, the differential staining of the components of intact and
treated biofilms revealed a significant reduction of β-polysaccharides, one of the main
components of the biofilm matrix [53]. On the other hand, the appearance of bacteria in
urea and semen after Longidaza® treatment [86] suggests the necessity of the combination
of Longidaza® with antimicrobials to prevent bacteremia.

Accordingly, the combination of Longidaza® with antimicrobials, due to its capability
of destroying the biofilm matrix, appears to be a promising direction for the further im-
provement of antimicrobial treatment, as supported by both recent clinical data [57–60] and
the in vitro observations of this study (Figure 7). The efficacy of ciprofloxacine and cefurox-
ime was significantly enhanced, particularly against S. aureus, E. faecalis, E. coli, P. aeruginosa
and K. pneumoniae monomicrobial biofilms, although the synergy of the enzymatic and
antimicrobial treatment varied for different bacteria and treatment times. Apparently,
this could be attributed to the variations in the biofilm matrix composition formed by
various bacteria, which in turn affects their susceptibility to different antimicrobials [53].
In particular, it has been shown that cellulose and the amyloid protein ‘curly’ are the main
components of the biofilm matrix of enterobacteria, while the main components of the
biofilm matrix formed by E. faecalis, P. aeruginosa, and K. pneumoniae biofilms are polysac-
charides and eDNA [87–89]. Additionally, Ciprofloxacin has been reported to penetrate the
biofilms of the majority of bacteria [90,91], which apparently decreases the further effect of
the matrix destruction by Longidaza®.

Surprisingly, no significant increase of antimicrobial efficacy in the presence of Longidaza®

has been observed for dual-species biofilms formed with S. aureus and other tested bac-
teria (Figure S3). Because solely antibiotic treatment led to a significant decrease of
the cells’ viability, such an effect could be a consequence of complicated interactions of
S. aureus with other bacteria in mixed biofilms that result in their altered susceptibility to
antimicrobials [67,68]. Notably, several recent investigations have reported that various
metabolites produced by P. aeruginosa increase the sensitivity of S. aureus biofilms to fluoro-
quinolones, membrane-targeting antibacterial agents and antiseptic chloroxylenol, while
simultaneously promoting their tolerance to beta-lactams, glycopeptides, aminoglycosides
and macrolides [92–94]. In turn, S. aureus also affects the susceptibility of P. aeruginosa
to antibiotics in biofilms [67]. Nevertheless, the synergetic effect was visible in the reza-
zurine test on cell clumps detached from the biofilm (Figure S4), an intermediate state
between biofilm and planktonic cells [95], confirming that, despite of the above limitations,
Longidaza® could be an efficient tool for the treatment of biofilm-associated infection.

Taken together, our data indicate that the combination of antimicrobial treatment
with Longidaza® could significantly increase the effectiveness of biofilm-associated infec-
tions treatment, although an additional analysis to reveal the antimicrobials exhibiting
pronounced synergy with the enzyme is required to achieve the best treatment outcomes.

5. Conclusions

Taken together, our results indicate that Longidaza® destroys the monomicrobial and
mixed biofilms formed by Gram-positive and Gram-negative bacteria, which represent the
major causes of catheter-associated and urogenital infections. Scanning electron microscopy
confirmed the reduction of the biofilm biomass and the formation of porous structures
in both monomicrobial and mixed communities after treatment with Longidaza®. Conse-
quently, the combined use of the enzyme with antimicrobials promotes the effect of the
latter against bacteria within biofilms. Thus, we believe that Longidaza® could serve as an
effective tool to target both external and internal infections associated with monomicrobial
and mixed biofilms.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111740/s1, Table S1: Minimum Inhibitory Concentration (MIC) and Minimal
Bactericidal Concentration (MBC) values of the antimicrobials. Figure S1: Differential evaluation of
the fractions of the biofilm matrix components of various bacteria before and after 24 h treatment
with Longidaza®. Mature 48 h old biofilms were treated with Longidaza® (750 IU/mL) and stained
with Concanavalin A, Calcofluor, and SyproOrange to evaluate the changes of the α-polysaccharides,
β-polysaccharides and protein composition, respectively. The asterisks (*) denote a statistically
significant difference of the fluorescence in the untreated wells and wells treated with Longidaza®

(p < 0.05). Figure S2: The effect of Longidaza® on the susceptibility of biofilm-embedded bacteria to
antimicrobials. Longidaza® was added to 48-h-old biofilms until a final concentration of 750 IU/mL.
Ciprofloxacin and cefuroxime were added up to final concentrations of 1–16× MBC (see Table S1
for values). After 24 h incubation, the biofilms were washed twice with sterile 0.9% NaCl. The
viability of the adherent cells was analyzed using a resazurine test. The blue boxes denote wells
with non-viable cells. Figure S3: The effect of Longidaza® on the susceptibility of biofilm-embedded
dual-species bacterial consortia to antimicrobials. Longidaza® was added to 48-h-old biofilms
until a final concentration of 750 IU/mL. Ciprofloxacin and cefuroxime were added up to final
concentrations of 1–16× MBC (see Table S1 for values). After 24 h incubation, the biofilms were
washed twice with sterile 0.9% NaCl and the viability of adherent cells was analyzed using an MTT
assay. The asterisks (*) denote a statistically significant difference of the residual respiratory activity
in untreated wells (solely antimicrobials) and wells with a combined treatment (p < 0.05). Figure S4:
The effect of Longidaza® on the susceptibility of biofilm-embedded dual-species bacterial consortia
to antimicrobials. Longidaza® was added to 48-h-old biofilms to a final concentration of 750 IU/mL.
Ciprofloxacin and cefuroxime were added up to final concentrations of 1–16× MBC (see Table S1
for values). After 24 h incubation, the biofilms were washed twice with sterile 0.9% NaCl, and the
viability of the adherent cells was analyzed using a resazurine test. The blue boxes denote wells with
non-viable cells.
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